N-Oxide analogs of WAY-100635: new high affinity 5-HT_{1A} receptor antagonists

Marchais-Oberwinkler, S. / Nowicki, B. / Pike, V.W. / Halldin, C. / Sandell, J. / Chou, Y.-H. / Gulyas, B. / Brennum, L.T. / Farde, L. / Wikstrom, H.V., *Bioorganic and Medicinal Chemistry*, Feb 2005

WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-

pyridinyl)cyclohexanec arboxamide] 1 and its O-desmethyl derivative DWAY 2 are wellknown high affinity 5-HT"1"A receptor antagonists, which when labeled with carbon-11...

N-Oxide analogs of WAY-100635: new high affinity 5-HT_{1A} receptor antagonists

Sandrine Marchais-Oberwinkler^{a, , ™}, Bartek Nowicki^a, Victor W. Pike^b, Christer Halldin^c, Johan Sandell^c, Yuan-Hwa Chou^c, Balazs Gulyas^c, Lise T. Brennum^d, Lars Farde^c and Håkan V. Wikström^a

^aDepartment of Medicinal Chemistry, University Center for Pharmacy, University of Groningen, Antonius Deusinglaan 1, NL-9713 AV Groningen, Netherlands

^bPET Radiopharmaceutical Sciences, Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD 20892-1003, USA

^cKarolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm, Sweden

^dDepartment of Molecular Pharmacology, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark

Received 18 November 2003; accepted 13 October 2004. Available online 17 November 2004.

Abstract

WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-

pyridinyl)cyclohexanecarboxamide] 1 and its O-desmethyl derivative DWAY 2 are wellknown high affinity 5-HT_{1A} receptor antagonists, which when labeled with carbon-11 (β^+ ; $t_{1/2} = 20.4$ min) in the carbonyl group are effective radioligands for imaging brain 5-HT_{1A} receptors with positron emission tomography (PET). In a search for new 5-HT_{1A} antagonists with different pharmacokinetic and metabolic properties, the pyridinyl N-oxide moiety was incorporated into analogs of 1 and 2. NOWAY 3, in which the pyridinyl ring of 1 was oxidized to the pyridinyl N-oxide, was prepared via nucleophilic substitution of 2-[4-(2methoxyphenyl)piperazin-1-yl]ethylamine on 2-chloropyridine-N-oxide followed by acylation with cyclohexanecarbonyl chloride. 6Cl-NOWAY 4, a more lipophilic (pyridinyl-6)-chloro derivative of 3, was prepared by treating 1-(2-methoxyphenyl)-4-(2-(2-(6bromo)aminopyridinyl-N-oxide)ethyl)piperazine with cyclohexanecarbonyl chloride for acylation and concomitant chloro for bromo substitution. NEWWAY 5, in which the 2hydroxy-phenyl group of 2 is replaced with a 2-pyridinyl N-oxide group with the intention of mimicking the topology of **2**, was prepared in five steps from 2-(chloroacetylamino)pyridine. *N*-Oxides 3–5 were found to be high affinity antagonists at 5-HT_{1A} receptors, with 3 having the highest affinity and a K_i value (0.22 nM) comparable to that of 1 (0.17 nM). By

calculation the lipophilicity of **3** (Log P = 1.87) is lower than that of **1** by 1.25 Log P units while TLC and reverse phase HPLC indicate that **3** has slightly lower lipophilicity than **1**. On the basis of these encouraging findings, the *N*-oxide **3** was selected for labeling with carbon-11 in its carbonyl group and for evaluation as a radioligand with PET. After intravenous injection of [*carbonyl*-¹¹C]**3** into cynomolgus monkey there was very low uptake of radioactivity into brain and no PET image of brain 5-HT_{1A} receptors was obtained. Either **3** inadequately penetrates the blood–brain barrier or it is excluded from brain by an active efflux mechanism. Rapid deacylation of **3** was not apparent in vivo; in cynomolgus monkey plasma radioactive metabolites of [*carbonyl*-¹¹C]**2**, which are known to be primarily metabolized by deacylation. Ligand **3** may have value as a new pharmacological tool, but not as a radioligand for brain imaging.

Graphical abstract

Keywords: WAY-100635; 5-HT_{1A} Receptor antagonist; High affinity; Pyridinyl *N*-oxide; PET; Aromatic nucleophilic substitution

Corresponding author at present address: Pharmazeutische und Medizinische Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany. Tel.: +49 681 3022484; fax: +49 681 3024386 Bioorganic & Medicinal Chemistry Volume 13, Issue 3, 1 February 2005, Pages 883-893

Full article available from Science Direct