Radioligands for the study of brain 5-HT_{1A} receptors *in vivo*-development of some new analogues of way

Victor W. Pike^{, 1}, Christer Halldin^b, Håkan Wikström^c, Sandrine Marchais^c, Julie A. McCarron¹, Johan Sandell^b, Bartek Nowicki^c, Carl-Gunnar Swahn^b, Safiye Osman¹, Susan P. Hume¹, Maria Constantinou¹, Bengt Andrée^b and Lars Farde^b

¹ MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, London W12 ONN, United Kingdom

^b Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, S-17176 Stockholm, Sweden

^c University Centre for Pharmacy, University of Groningen, Groningen, The Netherlands

"...Calculated from Pallas 2.1 for Windows (**Compudrug**). b Reference 4 . c Reference 25 . d...hydrolysis being the primary route of **metabolism**. However, the kinetic behaviour of DWAY...additional benefit of less susceptibility to **metabolism** than WAY, DWAY, or C6BPWAY. The results..."

Abstract

ABSTRACT. [*Carbonyl*-¹¹C]WAY-100635 (WAY) has proved to be a very useful radioligand for the imaging of brain 5-HT_{1A} receptors in human brain *in vivo* with positron emission tomography (PET). WAY is now being applied widely for clinical research and drug development. However, WAY is rapidly cleared from plasma and is also rapidly metabolised. A comparable radioligand, with a higher and more sustained delivery to brain, is desirable since these properties might lead to better biomathematical modelling of acquired PET data. There are also needs for other types of 5-HT_{1A} receptor radioligands, for example, ligands sensitive to elevated serotonin levels, ligands labelled with longer-lived fluorine-18 for distribution to "satellite" PET centres, and ligands labelled with iodine-123 for single photon emission computerised tomography (SPECT) imaging. Here we describe our progress toward these aims through the exploration of WAY analogues, including the development of [*carbonyl*-¹¹C]desmethyl-WAY (DWAY) as a promising, more brain-penetrant radioligand for PET imaging of human 5-HT_{1A} receptors, and (*pyridinyl*-6-halo)-analogues as promising leads for the development of radiohalogenated ligands.

Author Keywords: WAY; Radioligands; 5-HT_{1A} receptors; Brain; PET; Carbon-11; Fluorine-18

Nuclear Medicine and Biology Volume 27, Issue 5, July 2000, Pages 449-455